Matematisk tankegang

At stille og overveje spørgsmål som for eksempel om

  • udvidelsen af potensbegrebet over de forskellige talmængder
  • entydigheden af en given løsning til en bestemt type differentialligning
  • hvorfor cirklens ligning ikke er en funktion, men cirklens parameterfremstilling er en vektorfunktion
  • udvidelsen af en undersøgelse i plangeometri til rumgeometri eller sfærisk geometri
  • hvorfor begrebet hældning kan bruges i forbindelse med krumme kurver

er en del af at arbejde med matematiske spørgsmål, udsagn og begreber. At opstille disse spørgsmål handler dog ikke nødvendigvis om matematisk ræsonnement, bevisførelse, modellering eller problemløsning, men hører i højere grad under betegnelsen matematisk tankegang.

Dette tema behandler netop spørgsmål om, hvad matematisk tankegang kan være, og hvordan man i en dansk gymnasiesammenhæng kan støtte eleverne i at udvikle matematisk tankegang. Temaet peger på måder at få matematisk tankegang ind i undervisningen ifølge forskningslitteratur samt på hvilke vanskeligheder, elever kan støde på i disse sammenhænge.



Litteraturliste

  1. Balacheff, N. (1986). Cognitive versus situational analysis of problem-solving behaviors. For the Learning of Mathematics, 6(3), 10–12. https://www.jstor.org/stable/40247818
  2. Bardelle, C. & Ferrari, P. L. (2011). Definitions and examples in elementary calculus: the case of monotonicity of functions. ZDM Mathematics Education43(2), 233–246. https://doi.org/10.1007/s11858-010-0303-4
  3. Børne- og undervisningsministeriet (2019). Matematik – Fælles Mål. 240513-faellesmaal-matematik.pdfDreyfus, T. (2002). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathematical thinking. Mathematics Education Library: Vol. 11 (pp. 25–41). Springer. https://doi.org/10.1007/0-306-47203-1_2
  4. Drijvers, P., Kodde-Buitenhuis, H., & Doorman, M. (2019). Assessing mathematical thinking as part of curriculum reform in the Netherlands. Educational Studies in Mathematics, 102(3), 435–456. https://doi.org/10.1007/s10649-019-09905-7
  5. Epp, S. (2009). The use of logic in teaching proof. In B. Hopkins (Ed.), Resources for teaching discrete mathematics: Classroom projects, history modules, and articles (pp. 313–322). Mathematical Association of America. https://doi.org/10.5948/UPO9780883859742.038
  6. Furinghetti, F., Morselli, F. & Antonini, S. (2011). To exist or not to exist: example generation in Real Analysis. ZDM Mathematics Education43(2), 219–232. https://doi.org/10.1007/s11858-011-0321-x
  7. Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically (2nd ed.). Pearson Education Limited. (Original work published 1982).
  8. National Research Council. (1989). Everybody Counts: A Report to the Nation on the Future of Mathematics Education (9780309595841). National Academies Press.
  9. Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(1), 9–28. https://doi.org/10.1007/s10649-019-09903-9
  10. Niss, M., & Jensen, T. H. (Eds.). (2002). Kompetencer og matematiklæring – Ideer og inspiration til udvikling af matematikundervisning i Danmark. Undervisningsministeriet.
  11. Pedersen, M. K. (2024). Mathematical Thinking Competency and Digital Tools: Potentials and Pitfalls for Students’ Work with Differential Calculus in Upper Secondary Education. PhD dissertation. Aarhus University.
  12. Reyes-Rodriguez, A., Santos-Trigo, M. & Barrera-Mora, F. (2017). The construction of a square through multiple approaches to foster learners’ mathematical thinking. Teaching Mathematics and its Applications, 36 (3), 167–181. https://doi.org/10.1093/teamat/hrw022
  13. Sellers M. E., Roh K. H., & Parr, E. D. (2021). Student quantifications as meanings for quantified variables in complex mathematical statements. The Journal of Mathematical Behavior, 61, 100802. https://doi.org/10.1016/j.jmathb.2020.100802
  14. Shipman B. A. (2016). Subtleties of hidden quantifiers in implication. Teaching Mathematics and its Applications: An International Journal of the IMA, 35)(1), 41–49. https://doi.org/10.1093/teamat/hrv007
  15. Tall, D. (2002). The psychology of advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking. Mathematics Education Library: Vol. 11.  (pp. 3–21). Springer. https://doi.org/10.1007/0-306-47203-1_1
  16. Tirosh, C., & Vinner, S. (2004). Prospective teachers’ knowledge of existence theorems. In M. J. Høines, & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1 (p. 360). Bergen University College: IGPME.
  17. Watson, A., & Mason, J. (2005). Mathematics as a Constructive Activity: Learners Generating Examples (1st ed.). Routledge. https://doi.org/10.4324/9781410613714
  18. Watson, A. & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using variation to structure sense-making. Mathematical Thinking and Learning, 8(2), 91–111. https://doi.org/10.1207/s15327833mtl0802_1
  19. Watson, A. & Mason, J. (2007). Variation and mathematical structure. Mathematics Teaching Incorporating micromath, 194. The Association of Teachers in Mathematics.
  20. Ye, R. & Czarnocha, B. (2012). 2012. Universal and existential quantifiers revisited. In Tso,T. Y. (Ed.). Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4. (pp. 235–242). Taipei, Taiwan: PME.
Del tema Print