Eksempler på forløb fra indskoling, mellemtrin og udskoling om ræsonnementskompetencen. Forløbene har været gennemført i forsknings- og udviklingsprojekter om kompetenceorienteret matematikundervisning. Find inspiration i detaljerede logbøger og videoer fra de enkelte forløb.
Et ræsonnement kan forstås som den særlige måde at argumentere på, hvor man bruger fornuftsstyrede argumenter til at forbinde nogle konklusioner og de præmisser, som man mener, ligger til grund herfor.
Karakteristikken har den fordel, at den frigør kompetencen fra at referere til et bestemt matematisk stof, og den kan derfor anvendes som udgangspunkt for forløb på alle klassetrin. Desuden er karakteristikken kort, og her visuelt formuleret for at hjælpe med at bevare overblikket, også når man står i klasserummet.
Figur 1: Visuel model af et ræsonnement. (Kilde 1)
Med dette udgangspunkt betegner matematisk ræsonnementskompetence nogens indsigtsfulde parathed til både selv at gennemføre og forholde sig kritisk undersøgende til ræsonnementer, hvor konklusionerne er matematiske.
Kan fx tage udgangspunkt i at have planlagt et fire uger langt forløb, som skal være styret af, at eleverne udvikler deres matematiske ræsonnementskompetence.
Stil følgende spørgsmål:
Der er mindst to forskellige tilgange til denne udfordring. Den ene er at samle en række kompetencerelevante opgaver, som du selv udvikler og/eller finder i lærebøger mv. Den anden er at tilrettelægge undersøgelser, som eleverne skal gennemføre og øve sig i selv at styre.
I indskolingen kan man lade eleverne arbejde med ræsonnementsorienterede opgaver i en geometrisk kontekst. Det gør det nemmere at knytte ræsonnementerne til noget visuelt, som de både konkret og i tanken kan eksperimentere med.
Et sådan forløb har været gennemført i en 3.-klasse, se logbog og videoer fra forløbet:
Hvis vi som i eksemplet her forestiller os et forløb om vinkler, kan du fx formulere disse mål for elevernes læring:
Disse mål peger i retning af at give eleverne opgaver, som handler om vinkler i simple geometriske figurer, men hvor der inviteres til at svare med et argument, ikke et konkret tal, der er fået ved en måling eller beregning.
Det kan fx opnås med spørgemåder som disse: "Forklar…", "Er det rigtigt, at…?", "Kan det lade sig gøre, at…?", "Hvad er udgangspunktet (præmisserne), når du påstår, at…?". Helt konkret kan du fx give eleverne opgaver som disse:
Kan man tegne en trekant med:
Arbejdsformerne knyttet til disse opgaver skal gøre det muligt og naturligt for eleverne at fremføre og forholde sig til hinandens argumenter. Det inviterer bl.a. til, at de arbejder med opgaverne i makkerpar, og at de skal diskutere sig frem til en fælles besvarelse. Ikke at de kommer med hvert deres uafhængige svar.
En konkret proces kan fx bestå i, at eleverne:
På mellemtrinnet er eleverne gamle nok til, at du kan planlægge forløb, der kun har ræsonnementskompetence som læringsmæssigt sigtepunkt.
Et sådan forløb har været gennemført i en 5.-klasse ved at bruge taltavlen til at etablere et såkaldt undersøgelseslandskab, dvs. en invitation til eleverne om at gennemføre en udforskning styret af spørgsmål som "Hvad nu hvis …?" og "Hvorfor nu det?". (Kilde 2)
Se logbog og videoer fra forløbet:
Hvis du som i eksemplet her vil bruge sådanne forløb til at bevidstgøre eleverne om, hvad et ræsonnement er, kan målene for elevernes læring fx formuleres således:
I denne form for 'rene' ræsonnementsforløb er det vigtigt at skabe rum til, at eleverne kan arbejde nysgerrigt undersøgende med alle dele af kompetencen. Og derfor kan sådanne forløb med fordel tilrettelægges som et projektarbejde, hvor eleverne i grupper får en sammenhængende periode, fx fire lektioner, til dels at undersøge de ræsonnementsmæssige sider af noget, dels rapportere om deres undersøgelse ved at producere en tekst, en film eller lignende, som eventuelt kan fremlægges for og diskuteres med de øvrige grupper.
Aktivitetsmæssigt er det ikke nogen god idé at styre sådanne forløb gennem en masse enkeltstående og korterevarende opgaver. Det skyldes, at beherskelsen af den særlige form for arbejdsproces, som er karakteristisk for ræsonnementskompetence (og modelleringskompetence), bedst udvikles, hvis du giver eleverne tid og rum til at arbejde med processerne i deres helhed. (Kilde 1)
Det er derfor bedre at give eleverne et overordnet spørgsmål, som de skal arbejde med de ræsonnementsmæssige sider af i hele projektperioden. Det kan fx handle om:
I udskolingen kan man planlægge forløb, der alene har ræsonnementskompetence som læringsmæssigt sigtepunkt.
Et sådan forløb har været gennemført i en 9.-klasse med udgangspunkt i, at klassen i fællesskab forholdt sig til forskellige former for nyhedsklip fra aviser og tv, se logbog og videoer fra forløbet:
Efterhånden som eleverne bliver ældre, kan længden på problemorienterede projektforløb med fordel udvides til at vare et par uger eller tre, så der er god tid til både indledende afgrænsninger og problemformulering, analyse af dette problem og afsluttende fremlæggelse og diskussion af resultaterne.
Aktivitetsmæssigt er der to former for progression, som man kan tænke ind i rammesætningen af elevernes arbejde med at udvikle ræsonnementskompetence.
Det kan fx ske med afsæt i følgende mål for elevernes læring:
til: Grundskole, Erhvervsskole og Gymnasie
emne: Kompetenceorienteret undervisning
UDGIVET: 2021