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NCTM Standards

NCTM Standards, aiming for students to 
• become better problem solvers, 

• learn to reason mathematically, 
• learn to value mathematics, 

• become more confident in their mathematical ability, 
and 

• learn to communicate mathematically" 
(Maccini and Gagnon, 2002)
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Pendulum swings

• Pendulum swings from practicing skills to problem
solving & sense making, and back

• Wil it be different this time?

• The Standards are ambitious and hard to enact

• Three decades of research and development; 
Standards-based, Standards-inspired, problem based, 
……. Inquiry Oriented Instruction
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Exemplary innovaton

Schoenfeld (2003):
• The Philadelphia Standards-inspired reform (---

# schools)  satisfactory results, both
• understanding, problem solving
• procedural skills

• Requirements 
1. The curriculum materials must support inquiry-

oriented instruction
2. Teachers must be able to teach in this manner. 
3. Mandated assessment must be in line with the 

goals of Standards-inspired reform
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We know how to do it

Requirements - footholds

1. Curriculum materials 
ó instructional design theory: RME 

2. Teaching
ó theaching theory: socio-constructivism, IOI

3. Assessment
ó goals, assessment, competencies, KOM
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Overview

1. Instructional design theory: 
1. History of RME 
2. Socio-constructivist elaboration of RME

2. Theories on teaching: socio-constructivism, IOI
(3.  Goals, assessment, competencies, KOM)
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RME, History/background
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RME, History/background

RME theory originated from Freudenthal’s (1973) 
philosophy of mathematics education
• Mahematics as a human activity

• looking for problems
• solving problems 
• organizing subject matter

• matter from reality
• mathematical matter

This can be matter from reality which has to be organized according 
to mathematical patterns if problems from reality have to be solved. 
It can also be a mathematical matter, new or old results, of your 
own or of others, which have to be organized according to new 
ideas, to be better understood, in a broader context, or by an 
axiomatic approach. (Freudenthal, 1971, 413-414). 
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RME, History/background

• Task designers/researchers ‘Freudenthal Institute’, to 
design instructional sequences that were in line with 
Freudenthal’s philosophy of mathematics

• Treffers (1987) construed RME theory by reconstructing
the principles that underpinned this design work 

• Treffers (1987) 
• horizontal mathematization 

organizing subject matter from reality
• vertical mathematization 

organizing mathematical matter
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RME, History/background

Treffers’ RME theory was published at a favorable 
time ó push for understanding and applications 
& RME theory was connected to a series of 
prototypical instructional sequences
à collaborative projects in several countries

US projects fostered a merger of RME and socio-
constructivist thinking:  
• research projects led by Paul Cobb (----)
• Mathematics in the City project (---)
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RME & socio-constructivism

• RME practitioners/theorists started to embrace 
socio-constructivist ideas in varying degrees
• Socio-constructivist elaboration of RME ó

Cobb, Yackel and Gravemeijer à ‘inquiry 
approach’ & socio-constructivist elaboration of 
RME (>10 year collaboration)
• Rasmussen / RUME group, “Inquiry Oriented 

Instruction” (build on RME)
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RME & socio-constructivism

• Classroom culture (New for RME)
• Symbolizing & modeling (≠ socio-constructivists)

à emergent modeling

• RME revisited; Socio-constructivist elaboration of 
RME Theory, “prescriptive” (instructural design)

• Treffers’ RME theory, descriptive

ó categorizing textbooks:
• mechanistic, empiristic, structuralistic, realistic
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Back to our objective, footholds

We know how to do it
1. Instructional design theory: RME 
2. Theories on teaching: socio-constructivism, IOI
3. (Assessment)
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RME revisited

Socio-constructivist elaboration of RME Theory; 
istructional design theory

• Instructional design heuristics:
• Guided reinvention
• Didactical Phenomenoloy
• Emergent Modeling
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Guided Reinvention

Freudenthal:
Mathematics as an activity
Students should be supported in reinventing
mathematics
• Sources if inspiration:
• history of mathematics 
• informal solution procedures  (Streefland)
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Guided Reinvention

• History of mathematics
• Egyptian fractions
• Decimals
• Calculus 

• Informal solution procedures
• Fair sharing
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Guided reinvention of decimals

T: How would one have measured in old times?
…. Iron wire (of 1 meter) 
Task: Mesuring with a rope of 1 meter
• 1 rope plus 4/5 rope
• 1 4/5 ‘rope-length’

T: How to measure more precise?
Ss: in fouths, in siths, in fifths
T: Wat would be a convenient number?
T: Historically: in 10 pieces.
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Guided reinvention of decimals

Task: Measuring with a paper strip with
subsivision in 10ths. 
• postcard
• Students: 1/3 strip

T: What subdivision woud be convenient?
Ss: 6, 12, 28, 10. 
T: Historically: 10ths.
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Les 3

T: The long strip is 1 meter; the small strip is 10
centimeter.
T: What would 1/10 of the small strip be?
Ss: 1/100 meter.
• Express 60 cm, 55 cm, 30 cm, 25 cm in strip 

lengths
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Student work
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Student work
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Student work
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calculus
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Calculus & kinematica

• Discrete benadering van beweging:
verplaatsingen per tijdseenheid
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Calculus & kinematica

• (Cumulatieve) verplaatsingsgrafiek: 
samenhang tussen verplaatsing en afgelegde 
weg
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Calculus & kinematica

• Continue tijd-as, Ds/Dt als snelheidsmaat
• Oppervlakte als maat voor de afgelegde weg
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Calculus & kinematica

• Benadering met lokaal constante snelheden
• Oppervlakte als maat voor de afgelegde weg
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Calculus & kinematica

• Continue grafiek afgelegde weg; discreet 
benaderen
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Fractions
Four children share three pizzas

29

Fractions
Four children share three pizzas
• Possible solutions

3 x ¼
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Fractions
Four children share three pizzas
• Possible solutions

3 x ¼
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Fractions
Four children share three pizzas
• Possible solutions

3 x ¼

½ + ¼ 
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Fractions
Four children share three pizzas
• Possible solutions

3 x ¼

½ + ¼ 

33

Fractions
Four children share three pizzas
• Possible solutions

3 x ¼

½ + ¼ 

¾ = 1 – ¼ 
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Guided Reinvention

Starting points should be experientially real
• Situations in which students can act and reason 

sensibly
• some (!) real-life situations ≠ authentic
• stories
• Mathematics
Contexts are not added to motivate students 
(sugar coat math), but to create a basis for 
understanding
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Didactical Phenomenology

Freudenthal (1986)
• In the history of mathematics, mathematical thought 

things (such as concepts, rules and procedures) are 
constructed as means for organizing subject matter 

• instructional designers should go in search of, 
“phenomena that beg to be organized by the thought 
things that are to be constructed by the students”

• Create a situation
• “What are the phenomena that are organized by this 

concept, rule or procedure?”
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Didactical Phenomenology

• Example “distribution” 

• 7th grade: mean, mode, quartiles, extremes, ..

• Tools to get a handle on the distribution

• Alternative goal: distribution as a mathematical
object
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Didactical Phenomenology

• Area ó probability/density distribution
• Graph of a density function

• height = density of data points around that value
• Distribution can be thought of in terms of shape and

density

• Spread
• Skewness
• Position

38

Didactical Phenomenology

What are the phenomena that are organized by 
this concept, rule or procedure?

(gets you a handle on)
• Density function organizes density of data 

points
• Density organizes how the data points are 

distributed
• Data points on an axis organize measurement 

values
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Didactical phenomenology

Instructional design:
Bottom-up: organizing:
• Organizing measurement values 

à data points on an axis
• Organizing the distribution in of data points 

à density
• Organizing density 

à density function
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Didactical Phenomenology

• A broad phenomenological exploration 
(Treffers), which may be exploited to create 
many inroads for a give topic
• fractions:

Partiting, measuring, deviding, ratio, 
proportions,

41

Emergent Modeling

• Friction between the role of models in RME and the 
constructivist aversion towards models and symbols     
[classroom observations]

• Learning paradox (Bereiter, 1985):
• “How is it possible to learn the symbolizations you 

need to come to grips with new mathematics, if you 
have to have mastered this new mathematics to be 
able to understand these symbolizations?”

• Circumvent the learning paradox

• History: symbolizing and the development of meaning 
co-evolve (reflexive relation symbolizing & 
meaning)(Meira)

42

Emergent Modeling

the emergent-modeling design heuristic, 
• A model that first comes to the fore as a model of

informal mathematical activity and gradually develops 
into a model for more formal mathematical reasoning.

• overarching model; model-of/model-for
• sub-models/chain of signification (material 

correlates of the overarching model)
• new reality; objects as junctions in a framework of 

mathematical relations
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Data Analysis as an example
• Model shift: model of measures/dat values
• Model for reasoning about distribution
• Developing a network of mathematical/statistical relations: 

notions of density, shape, spread, skewness; omplicit
notions of measure and variable

• Series of sub-models:
Value bars

Dot plot

Four equal groups

Box plot
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Emergent Modeling

Mathematical objects
• Sfard (1991): history of mathematics: 

processes are repeatedly transformed into objects, 
which in turn become subject to new processes

Number: counting := natural number
Fractions: dividing := fractions
Functions: 

executing calculation prescriptions := functions
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Proces -Object

• f(x) = 2x + 3    ó proces (prescription):
multiply by 2 and add 3

e.g. x = 4 à ‘2 × 4 = 8’; ‘8 + 3 =11’
• Looking at all input values ‘x’ and corrsponding values

f(x)

x

Set of orderd number pairs ó object

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Reification

Function as an example
• First, prescriptions: how an output value is produced 

for a given input value. (process). 

• Later on, function as a whole: set of ordered number 
pairs à functions become objects with certain 
characteristics; such as being linear, quadratic, or 
periodic.

• Duality: process & object ≈ procept (Gray & Tall)

• shuttle back and forth

lineair kwadratisch periodiek
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Teaching
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Teaching

Socio-constructivism

• Students are expected to 
• explain and justify their thinking; 
• try to understand other students’ reasoning, 
• and to ask questions if they don’t;
• challenge arguments, they do not agree with

• This is not what students do in school 
mathematics

• coffee….. 

• Social norms/didactical contract

Emergent perspective (Cobb & Yackel)
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Social Psychological
perspective perspective

• Classroom social
norms

• Socio-mathematical
norms

• Mathematical 
practices

• Beliefs about one’s
own role, the role of 
others

• Mathematical beliefs
and values

• Mathematical 
interpretations and
reasoning

Socio-constructivism, History/background
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Socio-constructivism, History/background

Sociomathematical norms ó what mathematics 
is:
• what counts as a mathematical problem
• what counts as a mathematical solution
• what counts as a more sophisticated solution

provide a basis for intellectual autonomy
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Socio-constructivism, History/background

Classroom Mathematical Practices 
• Who’s learning trajectory?
• All students???
• Individual learning routes???

• Alternative: sequence of mathematical practices: 
all students are more or less on the same track
• Initially students have to explain and justify,
• Later they don’t ask for justification anymoreó

mathematical practice
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Socio-constructivism, History/background

How to change the classroom social norms
• Establishing social norms ó experience
• What is valued
• What is rewarded

• Using instances as opportunities to clarify 
norms
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• Mr. K.: “How many?”
• Donna: “Eight”
• Mr. K.: “How many?”
• Donna: “Eh, … seven(?)”
Next Mr. K. moves to other students. Later as it is
Established that 8 was the right answer, Donna 
complains
• Donna: “I said eight but you said I was wrong!”
• Mr. K.: “What is your name?”
• Donna: “Dona” 
• Mr. K.: “What is your name?”
• Donna: “Dona”
• Mr. K.: “And if I would ask you again, 

“What is your name?”, would you say 
anything else but Donna?”
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Teaching

Simon (1995)
“If the students construct their own mathematics, how 
do I make them construct, what I want them to 
construct?

hypothetical learning trajectory

- envision the mental activities of the students 
ó goals of the lesson

hypothetical: check expectations

à anticipate, enact, analyze, reflect, revise
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Example 

Do my students (student-teachers) understand area.
• Area = length x width 

• Blind algorithm??
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Rectangles problem 1.

Determine how many cardboard rectanglesfit
on the top surface of your table
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Rectangles problem 2.

Bill said, 

“If the table is 5 rectangles long and 6 
rectangles wide, and I multiply, 5 x 6, then I 
have counted the corner rectangle twice.”
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Rectangles problem 3.

I used the turned rectangles method, and I got 
32 for table A, and 22 for table B. 

Can we now say something about which table 
is bigger?
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The stick problem.

Two people work together to measure the size 
of a rectangular table; one measures the length 
and the other the width. They use a stick to 
measure with. The sticks, however, are of 
different lengths. Louisa says, 

“The length is four of my sticks.” 

Ruiz says, 
“The width is three of my sticks.” 

What can you say about the area of the 
rectangular table?
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Original turned rectangles problem
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anticipate, enact, analyze, reflect, revise

• Students know the area formula, but they don’t
understand it à hands-on activity
• Students do not seem to care about why you have 

to multiply; multiplying is a clever way of counting
measurement units à have the students create the
measurement unit: turned rectangles
• Problem too difficult; maybe carton rectangles

interfere à
• Stick problem; this works, students create a 

measurement unit with the sticks as sides
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Inquiry Oriented Instruction

RUME group
Inpired by RME especially Emergent Modeling

Principles
• Generating student ways of reasoning
• Building on student contributions
• Developing a shared understanding
• Connecting to standard mathematical language and

notation
Kuster, Johnson, Rupnow & Wilhelm (2019).
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Inquiry Oriented Instruction

• Practice 1. Teachers facilitate student engagement in 
meaningful tasks and mathematical activity related to
an important mathematical point.
• engaging students in cognitively demanding tasks
à conjecturing, justifying,defining

• Practice 2. Teachers elicit student thinking and
contributions
• encourage students to explain their thinking and

reasoningMake sense of each other’s thinking

• Practice 3. Teachers actively inquire into student 
thinking.
• Following up with clarification-type of questions
• To come to understand how the students make 

sense of the mathematics at hand
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Inquiry Oriented Instruction

• Practice 4. teachers are esponsive to student thinking 
and use student contribtions
• Springboard for followup questions to futher

progress towards the intended mathematics
• One student’s contribution à question to the

entire class

• Practice 5. teachers engage students in one another’s
reasoning
• Make sense of contributions of other students ó

revise their own thinking; shared understanding
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Inquiry Oriented Instruction

• Practice 6. Teachers guide and manage the
mathematical agenda.
• Mathematics develops from the students à which

ideas to focus on (framing topics for discussion)

• Practice 7. teachers support formalizing student ideas
and contributions, and introduce formal language and
notation when appropriate
• Helping students to connect their mathematics

(own notation, ideas..) to that of the broader
mathematics community; e.g. Make sense of 
textbook mathematics
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Mandated Assessment
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Mandated Assessment
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• RME instructional design theory
• Guided Reinvention
• Didactical Phenomenology
• Emergent Modeling

• Theories on teaching
• Socio-constructivism
• Classroom culture (social norms)
• HLT

• Inqury Oriented Instruction
• Principles & Practices 

• Mandated assessment 
• Competencies 
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Thank you
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