Early Development of Number Knowledge: Identifying Risk of Learning Disability

David C. Geary
University of Missouri

Research was supported by grant DRL-1250359 from the National Science Foundation, and NIH P20 HD109951

National Institute of Child Health and Human Development (NICHD)

OVERVIEW

- Focus on several key findings of a 4-year preschool to $1^{\text {st }}$ grade longitudinal study
- Basic goal was to identify the core early quantitative knowledge that predicts readiness for math learning in $1^{\text {st }}$ grade and risk of long-term learning difficulties
- First focus: Identify core risk areas.
- Second focus: Developmental patterns in these areas and subsequent mathematical development and achievement
- Third: Next steps, LD Innovation Hub

Longitudinal Design

Year	3 yrs.	4 yrs.	K	1
Math, Read Ach				
IQ				
Executive Control				
Quantitative Tasks				
Math Cognition				
Work Memory				

Sample

- Characteristics
-232 Title 1 preschool children
-Dropped 14 for low IQ (<70) and 21 for inattention or moved
-Primary Sample; 197; IQ is average: $M=97, S D=15$
-Mathematics achievement average; $M=95, S D=15$
-52\% girls, 55\% white
-38\% very low income, 42\% received food stamps, 9% housing
-Started at 3 years, 9 months

Early Development of Number Knowledge

- 12 Quantitative Tasks Administered 4 times (twice per preschool year)
- Bridge the gap between infancy/preschool number development and school-entry math competencies
- Core symbolic knowledge
- Numeral identification; 1 to 15
- Numeral comparison; which is larger ' 5 ' vs. ' 2 '
- Verbal counting; up to 100
- Enumeration; counting set of objects while pointing at each
- Cardinal knowledge; knowing the exact quantities represented by number words
- Children learning 'one,' 'two,' 'three' individually and once they understand 'four' they generalize to larger count words (Le Corre \& Carey, 2007), but don't induce that all words are $\boldsymbol{n + 1}$ for several more years (Cheung et al., 2017)
- First conceptual understanding of symbolic mathematics

Early Development of Number Knowledge

- Initial analyses:
- Performance on an inherent system for representing quantity, approximate number system (ANS), predicts math achievement but is mediated by cardinal knowledge
- Confirmed the mediation in follow-up analyses and through the end of preschool (Chu et al., 2015)
- In follow up, beginning of preschool quantitative predictors of end of preschool math achievement (Geary \& vanMarle, 2016)
- Series of Bayes regressions to identify best sets of domain general, nonsymbolic, and symbolic predictors
- Best in each set combined to reduce to final set of predictors, which were then used in standard regression
- Cardinal principle knower (CPK) - contrasts of 6 knowers with 'one', 'two', 'three' and 'four' knowers

Early Development of Number Knowledge

Predicting End of Preschool Mathematics Achievement

Beginning of Preschool Variable	Estimates	t	p	Estimates	t	p
Intercept	. 477	3.17	. 0018	. 434	2.55	. 0116
Age	. 083	1.58	. 1161	. 104	1.88	. 0615
Girls contrasted with boys	-. 189	-1.88	. 0613	-. 148	-1.40	. 1637
No information contrasted with college	-. 138	-0.94	. 3470	-. 124	-0.79	. 4300
High school contrasted with college	-. 107	-0.90	. 3694	-. 111	-0.88	. 3802
Preliteracy: Letter Recognition	. 370	6.28	. 0001	---	---	---
Nonverbal IQ	. 149	2.74	. 0067	. 152	2.66	. 0086
Numeral Recognition	---	---	---	. 302	4.13	. 0001
One-knower contrasted with CP knower	-. 575	-3.11	. 0022	-. 621	-3.11	. 0022
Two-knower contrasted with CP knower	-. 408	-2.50	. 0134	-. 372	-2.02	. 0448
Three-knower contrasted with CP knower	-. 276	-1.48	. 1399	-. 203	-0.99	. 3245
Four-knower contrasted with CP knower	-. 276	-1.61	. 1085	-. 205	-1.07	. 2875
Verbal Counting	. 202	3.37	. 0009	. 182	2.81	. 0055
Ordinal Comparison	. 108	2.13	. 0343	. 120	2.23	. 0266

Early Development of Number Knowledge

- What's the relation between the age of becoming a cardinal principle knower and later achievement (Geary et al., 2018)?
- Is knowing this by kindergarten entry sufficient, or the earlier the better?
- 141 of the 197 children completed assessments through 1st grade
- Included quantitative tasks that predicted end of preschool math achievement and ANS acuity (Geary \& vanMarle, 2016)
- Number processing, addition strategy, and number line tasks that formed a Number System Knowledge (NSK) composite
- NSK at beginning of $1^{\text {st }}$ grade predicted employmentrelevant math competencies in adolescence better than math achievement tests (Geary et al., 2013)

Measure	Mean Age
First Year of Preschool	
Give-a-Number	3 y 10 m
Discrete Quantity Discrimination	
Object Comparison	
Verbal Counting	3 y 11 m
Numeral Recognition	
Executive Functions	4 y 1 m
WIPPSI	
Letter Identification	
Give-a-Number	4 y 2 m
Second Year of Preschool	
Give-a-Number	$4 \mathrm{y} \mathrm{9m}$
Executive Functions	5 y 0 m
Give-a-Number	5 y 2 m
Discrete Quantity Discrimination	
Object Comparison	
Verbal Counting	5 y 2 m
Numeral Recognition	
Test of Early Mathematical Abilities	5 y 4 m
Kindergarten	
Numerical Operations	6 y 2 m
Word Reading	
Coloured Progressive Matrices	
First Grade	
Addition Strategy	6y 9m
Number Sets	
Number Line	

Early Development of Number Knowledge

- Used combination of Bayes and frequentist statistics to identify the best preschool predictors of NSK
- Age of becoming CPK (GiveN > 4) contrasted with children who did not achieve it by end of preschool
- For discrete quantity discrimination (ANS), object comparison, verbal counting, numeral recognition, used start of preschool scores and gains from beginning to end of preschool as predictors
- Domain-general predictors: executive function in first and second year of preschool, preschool IQ, preschool letter knowledge, and kindergarten IQ
- Best set of predictors in Bayes regressions used in standard regressions
- Added control of end of preschool mathematics achievement
- Then, all predictors
- Follow-up prediction of end of kindergarten Math and Reading Achievement

Early Development of Number Knowledge

Predicting Beginning of $1^{\text {st }}$ Grade Number System Knowledge

Predictor	Estimates	t	p	Estimates	t	p	Estimates	t	p
Intercept	-. 6808	-3.13	. 0022	-. 5763	-2.71	. 0076	-. 4893	-2.00	. 0474
Parental Ed: No Information vs. College	----	----	----	----	----	----	-. 0889	-0.48	. 6302
Parental Ed: High School vs. College	----	----	----	----	----	----	-. 2508	-1.86	. 0648
Letter Recognition	----	----	----	----	----	----	-. 1579	-1.77	. 0788
Nonverbal Intelligence	----	----	----	----	----	----	-. 0135	-0.21	. 8322
Verbal Intelligence	----	----	----	----	----	----	-. 0497	-0.75	. 4565
Executive Functions: Year 1	----	----	----	----	----	----	-. 0115	-0.17	. 8687
Executive Functions: Year 2	----	----	----	----	----	----	. 1016	1.47	. 1452
End of Preschool Math Achievement	----	----	----	. 2767	3.24	. 0015	. 2503	2.85	. 0052
Progressive Matrices	. 3064	4.51	. 0001	. 2389	3.47	. 0007	. 2559	3.56	. 0005
Cardinal Principle Knower by 3y 10 m	1.071	3.94	. 0001	. 9161	3.43	. 0008	. 9627	3.21	. 0017
Cardinal Principle Knower by 4 y 2m	. 9854	3.57	. 0005	. 8279	3.06	. 0027	. 9105	3.10	. 0024
Cardinal Principle Knower by 4 y 9 m	. 5781	2.41	. 0173	. 4809	2.06	. 0415	. 5192	2.13	. 0350
Cardinal Principle Knower by 5y 2m	. 0945	0.36	. 7167	. 0873	0.35	. 7284	. 1202	0.47	. 6395
Beginning Numeral Recognition	. 2302	2.46	. 0151	. 1004	1.02	. 3111	. 1863	1.59	. 1148
Gains in Numeral Recognition	. 1720	2.11	. 0368	. 0618	0.72	. 4724	. 0891	1.02	. 3104

Early Development of Number Knowledge

	Word Reading			Numerical Operations		
Predictor	Estimates	t	p	Estimates	t	p
Intercept	-. 1591	-0.61	. 5405	-. 3855	-1.30	. 1965
Parental Ed: No Information vs. College	. 2901	1.49	. 1398	-. 1492	-0.67	. 5058
Parental Ed: High School vs. College	. 2291	1.60	. 1111	-. 1180	-0.72	. 4719
Letter Recognition	. 2096	2.22	. 0283	. 0689	0.64	. 5257
Nonverbal Intelligence	. 0324	0.48	. 6306	. 0208	0.27	. 7869
Verbal Intelligence	. 1038	1.47	. 1437	-. 0428	-0.53	. 5975
Executive Functions: Year 1	. 0021	0.03	. 9777	-. 0065	-0.08	. 9383
Executive Functions: Year 2	. 0928	1.26	. 2092	. 0367	0.44	. 6640
End of Preschool Math Achievement	. 4385	4.70	. 0001	. 0520	0.49	. 6271
Progressive Matrices	. 0747	0.98	. 3296	. 2751	3.15	. 0021
Cardinal Principle Knower by 3y 10m	. 0634	0.20	. 8422	. 8679	2.38	. 0186
Cardinal Principle Knower by 4y 2m	-. 0415	-0.13	. 8943	. 4199	1.18	. 2418
Cardinal Principle Knower by 4y 9m	. 0317	0.12	. 9024	. 4089	1.38	. 1693
Cardinal Principle Knower by 5y 2m	-. 1531	-0.56	. 5739	. 0983	0.32	. 7525
Beginning Numeral Recognition	. 0875	0.70	. 4830	. 0931	0.65	. 5146
Gains in Numeral Recognition	. 0268	0.29	. 7731	. 1053	0.99	. 3239

Early Development of Number Knowledge

- Core results:
- Children who are cardinal principle knowers (CPKs) by about 4 years - before starting or early in the first year of preschool - have a 1 SD advantage on NSK in $1^{\text {st }}$ grade, controlling IQ, prior achievement, executive function, and parental educational background
- Age of CPK was unrelated to later reading achievement, demonstrating discriminant validity, but was related to later math achievement, although less strongly than to NSK
- Implication: Children's understanding of symbolic mathematics accelerates after becoming CPK
- In follow up study, we examined the relation between age of CPK and numeral comparison (Geary \& vanMarle, 2018)
- In older children, speed of numeral comparisons is a stronger predictor of concurrent and later math achievement than ANS acuity (e.g., De Smedt et al., 2013)
- Numeral comparison is early stage of learning relations among numbers

Early Development of Number Knowledge

- Approach:
- Children were randomly presented with pairs of numerals (1 to 15) they recognized and asked to identify the larger one
- Examined Numeral Comparison accuracy and ANS (discrete quantity discrimination) accuracy based on assessment time and then aligned to age of becoming a CPK
- Follow up: ANS and Numeral Comparison scores were correlated only after children became CPK
- ANS representations become integrated with symbolic knowledge

Accuracy for performance on the numeral comparison and discrete quantity discrimination tasks for groups that become cardinal principle knowers at time 1 (black, solid), time 2 (red, dashed), time 3 (blue, dot), and time 4 (green, two dashed)

Early Development of Number Knowledge

- What happens with children at high risk of math learning disability at the end of preschool (Chu et al., 2019)?
- At-risk < 25 percentile in both preschool years
- Typically-achieving had achievement scores in the average range for both preschool assessments and at end of $1^{\text {st }}$ grade
- Unexpected - many of the at-risk students recovered:
- Recovered students:
- Substantive gains in EF:
- Grains in Cardinal knowledge and CPK
- Still had subtle NSK deficits

Early Development of Number Knowledge: Multisystemic Approach

- Core finding: Cardinal knowledge is the linchpin to early math development and age of acquiring this knowledge is critical:
- At least a 2-year gap between early and late CPK. Why?
- LD Hub takes a multi-systemic approach focused on cardinal knowledge and supporting number competencies (e.g., enumeration) focusing on child-centered, home-centered, and classroom-centered factors and their interactions that could influence this early number development.
- Goal: 150 Children and their Families from same Title I Program as prior study.

Early Development of Number Knowledge: Multisystemic Approach

Measures	$\begin{aligned} & \text { Y1 } \\ & \text { Fall } \end{aligned}$	$\begin{aligned} & \text { Y1 } \\ & \text { Spr } \end{aligned}$	$\begin{aligned} & \text { Y2 } \\ & \text { Fall } \end{aligned}$	$\begin{aligned} & \text { Y2 } \\ & \text { Spr } \end{aligned}$
CHILD				
Quantitative Tasks				
1. Spontaneous focus number	\checkmark	\checkmark	\checkmark	\checkmark
2. Verbal counting	\checkmark	\checkmark	\checkmark	\checkmark
3. Enumeration	\checkmark	\checkmark	\checkmark	\checkmark
4. Cardinal Knowledge: Number words	\checkmark	\checkmark	\checkmark	\checkmark
5. Cardinal Knowledge: Arabic numerals	\checkmark	\checkmark	\checkmark	\checkmark
6. Numeral recognition	\checkmark	\checkmark	\checkmark	\checkmark
8. Numeral comparison	\checkmark	\checkmark	\checkmark	\checkmark
9. Ordinal Choice (intuitive understand more, less)	\checkmark	\checkmark	\checkmark	\checkmark
10. Math Vocabulary	\checkmark		\checkmark	
11. Number Line				\checkmark
Domain General				
1. Executive Function	V		\checkmark	
2. Letter Identification	\checkmark		\checkmark	
3. Wechsler IQ \& WM	\checkmark			
4. Math Achievement TEMA		\checkmark		\checkmark
CLASSROOM				
1. In-class Attention: Teacher		\checkmark		\checkmark
2. In-class Attention: Observation		\checkmark		\checkmark
3. Opportunities to Learn: Teacher Rpt \& Observation	\checkmark	\checkmark	\checkmark	\checkmark
HOME				
Parent				
1. Math Anxiety \& Attitudes (self and children)		\checkmark		
2. Cognitive abilities		\checkmark		
3. Math \& Read Achieve		\checkmark		
4. Demographics	\checkmark		\checkmark	
Home Environment				
1. Home Learning Opportunities (e.g., number bks)	\checkmark		\checkmark	
2. HOME Assessment	\checkmark		\checkmark	
3. Parent-Child Number Talk	V		\checkmark	

Early Development of Number Knowledge: Multisystemic Approach

- Basic Model: Complex Number Development related to:
- Mathematical Home Environment
- Child Characteristics
- Classroom Experiences
- Assume Developmental Interactions (red lines)
- Children's number knowledge might influence complexity of parent-child number talk that in turn enhances number development

Early Development of Number Knowledge: Multisystemic Approach

Conclusion

- Although an inherent sensitivity to quantity is correlated to math achievement, it does not appear to be central to later learning
- Rather, children's understanding of cardinality appears to be the key (Carey, 2004).
- Unique to humans
- It is their first mathematical induction, although continues to be elaborated for several years
- Learning cardinal value of individual words and numerals is the first step in learning relations among number symbols and the number system knowledge that predicts longer-term outcomes (Geary et al., 2013)
- One critical finding is that individual differences at the beginning of preschool are related to trajectory of number learning and readiness for school math.
- The factors contributing to early variation in number knowledge are not well understood
- The LD Hub is focused on identifying these factors
- These will be targets for a multisystemic intervention

