Difficult numbers?

Pernille B. Sunde
Pernille Pind

1

Are numbers perceived differently?

Does 87 feel worse than 94?

And does it feel even worse if you see yourself as bad at math?

Pause a moment!

Couldn't it be the exact opposite?

The more you see yourself as bad at math the more indifferent the numbers should be - all numbers are bad!

We saw something like that in word problems:
Low performers only recognize straightforward addition word problems - the rest are all the same, they are hard!
(Pind et al., 2021 presentation at NORSMA 10)
\qquad
3

Background

Based on analysis of correctness:
Children find single-digit multiplication with operands 7 and 8 more difficult than multiplications with other operands (Taraghi et al., 2014; van der Ven et al., 2015).

Differences in difficulty levels have been explained by several aspects, for example problem-size effect (for an overview see van der Ven et al., 2015).

How the difficulty of numbers is perceived irrespectively of the individuals' ability to perform a calculation correctly, has to our knowledge not been systematically investigated.

```
Ya Uiversty
College
KU LeUVEN
```

4

This study

We present here a first exploratory study investigating the research questions:

Are some numbers perceived as more difficult than others?

If so, is this dependent on general mathematical ability?

```
VIA Unive
College

\section*{This study}

Facebook (not a random sample!)
Adults age >18
691 adults: 515 women, 174 men
Self-report on age, gender, and
mathematical ability (1 to 5)
Number preferences, multiplications and calculations in context
Self-report on preferences and likelihood of success on a scale from 1 to 5

An open question on experiences with numbers in general
```

VIA Unive
Collige
kULEUVEN

```

\section*{Examples, Number preferences}
```

Hvordan har du det med bestemte tal? \square 臬 :
Her kommer 18 tal. Pả en skal fra 1 til 5 skal du vurdere hvor godt du har det med tallet.

```
```

6 9

```
6 9
Bad, I would prefer not 1
Bad, I would prefer not 1
to use it good number
to use it good number
    Dårligt, jeg vil helst ikke bruge det. ○\bigcirc\bigcirc\bigcirc\bigcirc Helt fint, for mig er det et godt tal.
    Dårligt, jeg vil helst ikke bruge det. ○\bigcirc\bigcirc\bigcirc\bigcirc Helt fint, for mig er det et godt tal.
78
78
Bad, I would prefer not 1
Bad, I would prefer not 1
to use it 1
to use it 1
    Dârligt, jeg vil helst ikke bruge det. ○\bigcirc\bigcirc\bigcirc\bigcirc Helt fint, for mig er det et godt tal.
```

 Dârligt, jeg vil helst ikke bruge det. ○\bigcirc\bigcirc\bigcirc\bigcirc Helt fint, for mig er det et godt tal.
    ```

\section*{How do you feel about certain numbers?}

We will show you 18 numbers. On a scale from 1 to 5 please rate how you feel about the number.

\(\mathrm{P}-\)
\(\mathrm{B}^{2}\)
\(\mathrm{~B}^{\prime}\)

7

\section*{Examples, Multiplications}


How do you feel about certain calculations?
We will show you18 multiplications. Don't solve them!
For each calculation, we ask you to answer two questions :
"Do you think you would be able to solve this math problem correctly?"
and "How would you feel about having to do this calculation?"

\section*{Examples, More multiplications}


9

\section*{Examples, Calculations in context}

The price difference for diesel and petrol is the same in the two cities of Duckburg and Goosetown.

In Duckburg, a liter of diesel costs DKK 17.78 and a liter of petrol DKK 18.57.
In Goosetown, a liter of diesel costs DKK 15.43 and a liter of petrol DKK 16.22.
In which city would you prefer to calculate the price difference?
\(\square\) Duckburg
\(\square\) Goosetown
\(\square\) I think it is equally easy or difficult
```

VIA Unive
Collige
kULEUVEN

```

\section*{Analysis}

Item difficulty was scored based on difficulty of included digits:
(e) easiest: 1, 2, 5 and 10
(j) intermediate difficult: \(3,4,6,9\),
(d) most difficult: 7 and 8 .
following the findings of Taraghi et al. (2014)


\section*{Results: \\ Distribution of maths competence}

The sample:
Facebook (not a random sample!)
Adults age >18
691 adults: 515 women, 174 men
Self-report on age, gender, and mathematical ability (1 to 5)

Mean scores:
Females: 3.92
Males: 4.25
Difference \(=0.32(p<0.0001)\)


\section*{Preference score}
GLM (type-3 analysis):
Difficulty of question (DQ): \(\quad \mathrm{p}<0.0001\)
Self-assessment score (SAS): \(p<0.0001\)
Interaction btw. DQ*SAS: p<0.0001

Sex
\(p<0.0001\)
\begin{tabular}{|l|r|}
\hline & \multicolumn{1}{|c|}{ mean } \\
\hline Females & 4.12 \\
\hline Males & 4.33 \\
\hline Diff. (raw) & -0.21 \\
\hline Diff. (partial) & -0.05 \\
\hline
\end{tabular}

```

VIA Unive
College
kULEUVEN

```
\(\begin{array}{r}\mathrm{P}-\mathrm{Y} \\ 8 \\ \mathrm{~B}^{\prime} \\ \hline\end{array}\)

13

\section*{Results}

Overall, men reported all numbers as easier than women even after correcting for self-evaluated mathematics ability level and difficulty of numbers.

Low ability groups perceived difficult numbers (numbers including digits 7 and 8 ) as more difficult than high ability groups did. The differences in scores indicate that low achievers perceived difficult numbers as relatively more difficult than high achievers did.
```

| Va Uive |
| :---: |
| College |

Possible explanations

Could it be that in our base 10:

- the easiest are the factors: 1, 2, 5, 10
- the intermediate are neighbours: 3, 4, 6, 9
- the most difficult are the remaining: 7 and 8

```
M YOUNiversity KULEUYEN
```

15

| Thumb is the most extreme here, |
| :--- |
| therefore the easiest. |
| Little finger, and index finger are |
| next-easiest. |
| The middle fingers, |
| are the hardest. |
| Right hand numbers are smallest |
| therefore generally easier than left. |

Postreme fingers and index finger
easiest.

Possible consequences

"Beliefs of personal efficacy constitute the key factor of human agency,"..."If people believe they have no power to produce results, they will not attempt to make things happen." (Bandura, 1997)

There is a risk that (self-perceived) low performers will not engage in problem solving including numbers they perceive as difficult.

As a result, they will have less experience and fewer potential successes in problem solving further contributing to low selfefficacy.

Status quo in exams

Danish $9^{\text {th }}$ grade exam, without calculator:

Opgave 5

> | | Regn stykkerne. | |
| :--- | :--- | :--- |
| 5.1 | $1072+4038=$ | |
| 5.2 | $701-149$ | $=$ |
| 5.3 | $350 \cdot 9$ | $=$ |
| 5.4 | $7021: 7$ | $=$ |
| may 2019 | $=$ | |

These 4 types of problems each year.

Status quo in exams

Analysis of digits.
From maj 2019 to maj 2023, 6 exams:

Status quo

Is difference in digit difficulty unconscious common knowledge?

Do we already use certain digits to "spice it up or cool it down"?

Implications

Does it matter?

Implications in Exams

$5.4 \quad 7021: 7$
may 2019
7021:7 =
31% of students did not get the right answer.
What would it be, if it was 5015:5=?
$5.4 \quad 15030: 15$
may 2023
15030:15=
32% of students did not get the right answer.
What would it be, if it was 17034:17=?

Implications in Exams

Did the exam makers spice up the first one and cool of the second one?

You could say they are pretty good at hitting around 30\% failure :-)

Implications

What would exams and textbooks look like if it was common conscious knowledge, that some digits are perceived as more difficult for students with math anxiety and/or students with math learning difficulties?

Would we be more aware not to let the numbers be a barrier for math learning?

```
VIA Unive
College

\section*{Next round in study}

\section*{What should we do differently?}
- we know, we would not have single digit multiplications
- include subtraction?
- test ability?
- ask to perform calculations?
- more word problems?
- include children?


25

\section*{REFERENCES}

Bandura, A. (1997). Self-efficacy: The Exercise of Control. New York: W. H. Freeman.

Pind, P., Bjerre, M., Sunde, P. \& Sunde, P.B. (2021). Low performers only recognize straightforward addition word problems. Presentation at NORSMA10

Taraghi, B., Ebner, M., Saranti, A., \& Schön, M. (2014). On using markov chain to evidence the learning structures and difficulty levels of one digit multiplication. In Proceedings of the Fourth International Conference on Learning Analytics And Knowledge (pp. 68-72).
van der Ven, S. H., Straatemeier, M., Jansen, B. R., Klinkenberg, S., \& van der Maas, H. L. (2015). Learning multiplication: An integrated analysis of the multiplication ability of primary school children and the difficulty of single digit and multidigit multiplication problems. Learning and Individual Differences, 43, 48-62.```

